LUNAR FIELD WORK AND EVA PLANNING BASED ON SCIENCE RATIONALE

J.E. Bleacher, M.A. Helper, C.R. Neal, G.R. Osinski, M.S. Robinson, C.K. Shearer, A.W. Snoke, and P.D. Spudis

INTRODUCTION

- Lunar Surface Systems Project (LSSP) of Constellation Program Office (Cx)
 - Designs for lunar surface systems supporting future human missions
 - Establish diverse engineering teams and working groups
 - Develop surface scenarios to set operational context
- Optimizing Science & Exploration Working Group (OSEWG) at HQ
 - Creating science based surface scenarios
 - Reference for engineering trade studies

INTRODUCTION

- OSEWG Surface Scenarios Working Group examining 3 options:
 - 1) ~ 7 days, 10 km radial distance
 - 2) ~ 45 days, 100 km radial distance
 - 3) ~180 days, 1000 km radial distance
- This talk reviews the results of a two day planning exercise for option 1
 - Two teams of four scientists with lunar and field backgrounds
 - Task: Identify site-specific surface science objectives, then design a site exploration strategy
 - Results presented to Cx members
 - Recommendations

TECHNICAL CONSTRAINTS

- 4 astronauts
- 2 unpressurized rovers
- 8, 2-person EVAs (8 hours)
- Maximum "walk back" distance of 10 km
- Can exceed maximum distance by using all 4 astronauts and both rovers
- Study areas:
 - Tsiolkovskiy Crater
 - Alphonsus Crater

STUDY AREAS

- Tsiolkovskiy
 - 20 S, 129 E (far side)
 - ~190 km complex crater
 - Imbrian age
 - Central peak
 - Mare fill
- Alphonsus
 - 13 S, 357 E (near side)
 - ~ 118 km complex crater
 - Pre-Imbrian age
 - Central peak
 - Central ridge
 - Pyroclastic deposits
 - Floor fractures
 - Ranger IX impact site

NRC LUNAR SCIENCE CONCEPTS

- 1. Bombardment history
- Structure and composition of the lunar interior
- 3. Structure, composition, and variability of the crust
- 4. Volatiles at the poles
- 5. Volcanic history
- 6. Impact processes
- 7. Regolith processes and weathering
- 8. Lunar atmosphere and dust environment

OVERARCHING SCIENTIFIC RATIONALE

- Targets:
 - 1. Surface/shallow subsurface crust materials (crater walls, melt sheets)
 - 2. Subsurface crust materials (central peaks)
 - 3. Deep crust/mantle materials (volcanic deposits)
 - 4. Regolith
 - 5. Impact craters
- Both teams chose to land inside the crater cavity

OVERARCHING SCIENTIFIC RATIONALE

- Targets:
 - Surface/shallow subsurface crust materials (crater walls, melt sheets)
 - 2. Subsurface crust materials (central peaks)
 - 3. Deep crust/mantle materials (volcanic deposits)
 - 4. Regolith

5. Impact craters

- Objectives:
 - 1. Reconstruct crustal lithologies, average composition of crust, lateral variability
 - 2. Assess lateral and vertical heterogeneity of crust, origin of secondary crust (Mg-suite), bulk composition of crust
 - 3. Assess heterogeneity of mantle, depth of melting, degree of differentiation, lava flow stratigraphy, volatile content
 - 4. Assess regolith formation processes, lateral vs. vertical mixing, reconstuct farside crustal lithologies, exotic components
 - 5. Assess extent of lateral mixing of ejecta, relate surface ages to crater retention, constrain current impact flux (Ranger IX)

TSIOLKOVSKIY

TSIOLKOVSKIY

- 7 total EVAs to explore:
 - Higher-Fe melt
 - Lower-Fe melt
 - Higher-Fe mare
 - Lower-Fe mare
 - Small impact craters
 - Rille-like feature
 - Anorthositic kipukas
 - Anorthositic peak
 - Mafic-bearing anorthositic peak
- One EVA exceeds 10 km radius (32 km)
- All other EVAs< 20 km

ALPHONSUS

ALPHONSUS

- 8 total EVAs to explore:
 - Dark halo craters (volatiles)
 - Pits
 - Melt sheet
 - Small impact craters
 - Ranger IX impact site
 - Regolith
 - Fossae
 - Highland crust
- Revisit dark halo craters and pits with different team
- All EVAs < 22 km

TESTABLE HYPOTHESES

- Basic EVA plans based on primary scientific objectives and dependent on testable hypotheses assessed in real time in the field
- Requires flexibility
 - EVA plans adjusted based on results of earlier field work

TESTABLE HYPOTHESES: TSIOLKOVSKIY

- Primary Objective:
 Determine origin of rille
 - Traverse entire rille length
 - Examine bedrock and stratigraphic contacts
- Secondary:
 - Assess nature of small highland kipuka
 - Characterize low crater density area and mare stratigraphy
- Secondary objectives dependent on initial assessment of rille from western scarp

TESTABLE HYPOTHESES: ALPHONSUS

- Primary Objective 1: Assess nature of volcanism related to pyroclastics and pits
 - Examine and sample dark mantle deposits
 - Examine and sample interior walls of pits
 - Examine and sample fossae
- Primary Objective 2: Assess lunar composition and evolution models
 - Sample mantle material in form of pyroclastics and possibly effusive volcanics
 - Sample highland crustal materials
- Second visit by second team allows follow up and new eyes

SAMPLING STRATEGY

- Sampling documentation strategy:
 - Collect UV-VIS-NIR spectra and multispectral context image for each sample site.
- For each site, collect bulk/scoop, rake, drive tube.
- Drag line and rake for sampling over steep slopes.
- Other sampling as Apollo 17.
- Conduct LRV sampling at predetermined intervals (or selected areas of interest) to collect regolith.
- Reconnaissance and some sampling carried out by robotic assistant/precursor => saves EVA time and enhances overall scientific return.

RECOMMENDATIONS

- Robotic mission designed as precursor and follow up is fundamental to maximize success of human mission.
 - Hazard assessment & scientific analyses
- Flexible EVA plans
- Mass of returned samples estimated at ~300 kg for 7-day sortie mission (based on Apollo 17 sampling); requires update of engineering plan.
- Enable scientific investigations with field instruments:
 - Digital handlens
 - Spectral cameras
 - Handheld geochemical analysis tools
 - Ground penetrating radar
- Deploy network or instrument station sites.
 - e.g. Geophones, seismic sources, surface magnetometers
- Continued support for ongoing efforts to geo-reference uncontrolled data sets.